
Kafkanator

A Fairness Toolkit and Optimization API for Data Science

Jose Francisco Saray Villamizar

Senior Data Scientist

jsaray@gmail.com

May 7, 2025

Motivation

Kafkanator API was developed with the purpose to help data scientists in some algorithmic fairness
dimensions that have not yet received the attention they deserve. Mainstream algorithmic fairness dis-
cussions are about ML statistical predictors, and the main goal is to reduce bias in a prediction. However,
there are many others fairness requirements that should interest a business. For example, for the ouput of
a given in-house algorithm, how fair it is ?: Is my algorithm preserving equity in ressource assignation ?,
is it maximizing the ressource allocation for each member of the population in�uenced by my algorithm?
Is it assigning fairly ressources in a population taking into account their di�erences ?.

The next sections shows some simple daily life examples, and how you can use Kafkanator to evaluate
how fair your business is doing it.

Fairness is a value that companies must respect and optimize. Customers have a fairness sense, and
when they see an unfair event, they question about hiring a service or buying a product again from an
unfair company.

1 The airplane example

I introduce you the atlantic �ight Bogotá - Europe, carry out by the company cool�ights.com.
A common airplane layout can be shown on diagram 1. It usually has N classes using Confort as

the ressource to be shared between population. In diagram 1 , a seat labeled with 3 means it is more
confortable than a seat labeled with 1 (much more space, for your legs, arms, better tv quality), and in
consequence is more expensive.

1

Fig 1. Bogota Europe �ight seating by passenger classes

The interesting question is: how good is being shared Confort ressource between the passanger pop-
ulation in a N-class �ight ?.The code presented here can be found in the notebook tutorials / Airplane
Confort Fairness Computing.ipynb. I will provide here some explanations about that code.

1.1 Lorentz Curves

1 from kafkanator import lorentz_curve,gini

2 import matplotlib.pyplot as pyplt

3 import numpy as np

4

5 # Constants declaration from figure 1.

6 W = 6

7 POP_1 = 10

8 POP_2 = 15

9 POP_3 = 30

10 CONFORT_1 = 3

11 CONFORT_2 = 2

12 CONFORT_3 = 1

13 # Build two arrays of population and confort in increasing order:

14 # from the lower ressource population to higher ressource.

15 population = [POP_3*W , POP_2*W, POP_1*W]

16 confort = [CONFORT_3*POP_3*W , CONFORT_2*POP_2*W, CONFORT_1*POP_1*W]

17 # Obtain x and y coordinates to build the lorents curve in matplotlib.

18 (lorentz_x_coordinates, lorentz_y_coordinates) = lorentz_curve (population , confort

)↪→

19

Code above calls the lorentz_curve Kafkanator method (line 18). Lorentz Curves [1] are a well known
mathematical method to compute Inequity.One of the goals of Kafkanator is to gather inequity measures,
and made them available for programmers and Data Scientists. Please see Kafkanator documentation to
check the currently implemented inequity measures.

Once you have the x,y coordinates stored in lorentz_x_coordinates and lorentz_y_coordinates you
can give them to matplotlib to build your curve, you will get something like this :

2

From this plot you can get valuable insights about fairness in that �ight seating architecture: almost 60%
of the passengers has less than 40% of the �ight confort. This is not very fair.

However it would be even better if we can measure fairness with a number. You can do this with the
Gini marker.

1.2 Gini index

To obtain the Gini from this �ight architecture you can use the gini method implemented in kafkanator
API. You can read comments to understand how to proceed.

from kafkanator import lorentz_curve,gini

import matplotlib.pyplot as pyplt

import numpy as np

In order to use gini, you must pass one array with the income ordered from the

people having less↪→

income to the high income population. In our case we have W*POP_3 people with

confort 1, W*POP_2 confort 2 and W*POP_1 confort 1↪→

conf1 = np.concatenate((np.repeat(CONFORT_3,W*POP_3) , np.repeat(CONFORT_2,W*POP_2)

, np.repeat(CONFORT_1,W*POP_1)) , axis=None)↪→

g = gini(conf1)

print (g)

0.24242424242424243

As a reminder, the closer the Gini index is to 0, the more equity there is in ressource assignation. You
are invited to see in the notebook, how an increment of class 3 population to 360 people and 0.5 confort
points instead of 1 impact Gini Index.

2 The salary distribution example

Let's imagine that the �ctional corporation fairnessforworkers.com , hired you as a data scientist, in order
to measure how fair they are doing when talking about salary distribution among workers. Speci�cally,
they want to analize salary gap among salaries having the same speciality. They will give you the following
dataset (that you can �nd in data / salaries.csv):

3

Identi�er Experience Title (Diploma) Salary
1 2 A 1000
2 3 A 2000
3 4 B 4000
4 5 B 3500
5 4 A 8000
6 1 B 2000
7 3 C 4000
8 4 C 5000
9 5 B 2000
10 1 A 5000

You can solve this problem, by mixing two statistical techniques : clustering and Gini index !. You
can �nd all the code in tutorials / Salary Inequality.ipynb.

Lets use kafkanator API to quickly solve this type of problems, At the end you will get an array of
Ginis, each one corresponds to the clusters generated by diplomas A,B,C:

from kafkanator import gini_per_cluster

workers = pd.read_csv('./data/salaries.csv',sep=',',header=0)

salary_groups = workers.groupby (['diploma'])

gns = gini_per_cluster(workers,'diploma','salary')

print(gns)

gns = [('C', 0.05555555555555555), ('A', 0.375), ('B', 0.16304347826086957)]

From this result we can conclude that the most fair salary distribution is on the people belonging to
diploma C cluster, while diploma A cluster is showing strong inequality in their salary distribution.

Note that this is a �rst approximation of the salary inequality problem. There are other important
features to take into account when assessing fairess on this case. For example there could be people that
according to his contract has to work more hours, so they are entitled to earn more money. In the next
kafkanator versions I will re�ne the solution for these cases.

3 Example 3. Fairness in recommendation systems

Let 's imagine that you are a very cool and full of swag rock singer, and you want to broadcast your
music videos on the internet. You want to choose a web video broadcast company that ensure you that
you will appear a fair-equal number of times in the recommendations that they made to their customers
compared to the other rock stars. You have choosen cooltube.com because it has a good reputation to
be fair in the sense you are looking for.

However, is cooltube.com showing you a fair number of times in their recommendation system ?
Which could be a fair number of appearances in their recommender system ? How we compute such a
number ?.

We can model the coolsongs.com recommendation engine output as a table. One column for the
query identi�cation number, and another column for a list of artists ids that match that query by order
of relevance from left to right .

Table 2 shows a table example , you can �nd the whole code in tutorials / Fairness Matrix.ipynb.

4

Query Rankings
1 2,5,7,10,12
2 1,6,7,5,8
3 5,7,9,10,12
4 14,5,10,2,1
5 2,8,9,10,1
6 4,6,7,9,10
7 13,5,9,15,16
8 17,5,6,18,1
9 1,2,3,4,5
10 20,19,18,17,14

This table shows the output for 10 di�erent queries. Row one means that the artist with id 2 was the
most relevant, and it was shown �rst, then artist with id 5 and so on.

3.1 Recommendation Score for Artists

From such a table we can de�ne the artist k recommended score (RAk) by:

RAk =
∑n

i=1(N − posi(Artistk))

Where N is the number of artist shown by output (5 in this case), n is the number of rows, and
posi(Artistk), is the position on row i that artist k is holding from left to right , being 0 the posi-
tion of the leftmost identi�er. For example in query 5, pos5(Artist9) = 2.

RAk can be used to verify how fair is being coolsongs.com recommendation engine.It measures how
much an artist was shown in the recommendation system in a temporal sequence of queries.

Check the python notebook in order to see how Algorithm 2 computes this score for every artist and
leaves the result in rock_artist dictionnary. Once these scores are computed, you can apply unequality
measures over these scores , like Gini index, Theil index etc, to analyze inequality.

3.2 Recommendation Score for Sensitive Attributes

Business also normally have a table with sensitive attributes of artists to detect bias in the recommen-
dations :

artist id age gender nationality
1 20 M national
2 52 F foreign
3 36 M national
4 25 F foreign
5 67 M national
6 45 F foreign
7 59 M national
8 23 F foreign
9 18 M national
10 56 F foreign
11 64 M national
12 35 F foreign
13 38 M national
14 63 F foreign
15 41 M national
16 72 F national
17 20 M national
18 19 F national
19 29 M national
20 46 F national

5

At the same pace we compute RAs, we can compute the sensitive attribute score. Intuitively, if an
artist is man and foreigner and it obtained a score of

RAk =
∑n

i=1(N − posi(Artistk)) = 23

This same score can be added to the sensitive categories man and foreigner.

Formally, for sensitive values {SV1, SV2, SV3, ...SVn} belonging to Sensitive Category SCm (for example
{Man,Womam} ∈ Gender), we can de�ne the Sensitive value score SVj like :

SVj =
∑n

i=1(N − posi(Artistk) when Artistk[SCm] == SVj)

Where Artistk[SCm] is the value of the column SCm in artists table.

Inspecting the notebook, you can see how Algorithm 2 computes also sensitivity weights and leaves
them on counters_sens_attributes variable. Once this is computed, the notebook plots lorentz curves to
study unfairness related to sensitive attributes :

From these curves, we conclude that Gender attribute deserves attention. as is the one that is far
from the blue equity line.
(Revisar bien esta conclusion, 'nationality': 'foreign': 57, 'national': 93, 'gender': 'F': 68, 'M': 82)

References

[1] https://en.wikipedia.org/wiki/Lorenz_curve

6

